Unsupervised
Sentiment Analysis

500 000 Tweets about Elon Musk @&

maybe 1ook
anyonegy little
hate lgﬂlfl:}j‘_kn OWproblem matter]je
0 ng life
c gﬁguw faCt demouat hma ke "
f 3]l.'ll'ﬂ l|1[Irmation si1qe
‘*-E: oy soc.L?l media peagnger part SomEthlng
S _‘_ﬁtake c O elughl
_l s 5 3
sue el
% S e e SiOp l g tart understand t -
S 1ve shit 1O -
g g0 post even >, new =
Ay g tel] anyeisigonTol o0 2 g, o ey
— -) = s =
(E try I?—o I £ I I | = W5 +
5 M Wz o hope
tr’Uth election b [oF} .--4‘3 u% Z- p
]'IEftEfr?tlot let us ,care = = ?)ﬂc'gl rol caunr;try% tesla
bt [L JWa Yeaho l l ‘ g_\orep iblican .—5 'J:-ﬂ % IJL-IY .l_Jal.Way
' t I‘l": B 5 s
) LIS _|_,ne\.fe:].LhE!‘dlt hmmﬁ kg sa £ £ -ELC.O =
L¥]
E3'0.3|ctuall§,.r SOIUEOFIE‘ o— voteyxe o ount
banned = twitter tile -—Ol !'F_‘E.‘ oM - "meﬁr
gOOd\1 E‘“ Q. dude g
Q wrong & eep
g— polnt
v |._|-I.’||.1Y

3"_‘3_’ Unade v p‘cweet ,]e%egn ” <y e

mUC_h r l real
Saying head ithers
call Owsaldtrylng

« Tove TrUmp
help Yetyagreegc el g

f:ll st
—— show everyone
CiadE] t a must w0|
lL [" I W y OunNd

5 called be
|1-__|H'|[|1 WO T ld ey e

Clément Delteil
i clementdelteil

Openinapp 7

..' Q Search @ Write Q 6

Unsupervised Sentiment Analysis
With Real-World Data: 500,000
Tweets on Elon Musk

Guided walkthrough in a real-world Natural Language Processing
project.

G Clément Delteil
@ Published in Towards Al - 15 minread - Feb12

283 Q4] ®» M
maybe 100k
may a?gET;ﬁ marter ¥
haLe talking P]_Jijlee
g 90 fact ¥ gemocrat
i free speec hm
E put social media anut er par SomEthlng
_take % el'm,l
3“9 S e e ELop g start under :,rand
1ve hit " tlme T
° g Ospésl"lwell evens [1€ € (nev
day tall anythingask follow — W > P
run 50 =t Sl vt
I s l 4] | I I h
truth election _:cr; («}] "Q_|J§ E g_' s
ke ™ip =1
LeTthest 10F lecus geare - it m“””i’ﬁ tesla
“Want-oneRyE N
i g GJ‘ [=
fr Jnever liberal A % ﬁ%’n E g £ E
%heo still a : :
Vote using |'_1
tJUi}ar:tually someonte y— ? ‘}om nu:t L

banned 2

_0q
ECJ
W%
e
£
lon
already
poll
=
=
g talk
oa
Vit
o
M —
oYy
m
pinion
o
Emt
3078
a1

mmade Sta tWEEtpr]EEQ(? pComnent er:rr.]]l'}- family
much I<p S gV bot

N OW y”“
Saldtl ying

: trum first
ney Tove trUMp ng
e_vmyone

dhic i help Yety agreegc “show
fbi r1113W0r'k t l} rEkg“gékwo”*
et yearWa alled - 1k live
Y crm WOt Ld bet

WordCloud of the most frequent words used in the dataset — Image by author

Most Natural Language Processing and Unsupervised Sentiment Analysis

projects that can be found on the internet use near-perfect datasets. The
textual data are all focused on a particular topic, which makes the analysis

much simpler.

[wanted to challenge myself to create a complete project: from data

collection to cleaning, visualization, and finally, sentimental analysis.

To do this, I needed a source of almost infinite data that could evolve over
time. I immediately thought of Twitter and the more than divisive person
that is Elon Musk. So I collected 500,000 tweets about him (503,986 to be

exact) over 30 days between November and December 2022.

In this story, I will present you all the steps I went through to clean,
visualize, and analyze this homemade data set. We will be able to discover
the most frequently used words to talk about Elon Musk, the most

mentioned accounts, and the overall emotions associated with his person.

Before we dive in, If you want to know how I collected this dataset, I suggest

you read my article on the subject.

Automate Your Python Scripts Using Windows’ Task Scheduler
Without a CMD Pop-up

Case study with the scraping of Tweets from Twitter about Elon
Musk using Tweepy.

levelup.gitconnected.com

First look at the data

I'm not going to lie to you and pretend I'm discovering the data for the first
time @& . Butit’s good to remember that having a first look at your data
before anything else allows you to foresee the steps to follow in the project

and see the potential problems...

You will find the source code in a Google Colab notebook given at the end of
this article so that you can reuse the code for your own projects. In the
meantime, for the sake of clarity, I will skip the installation steps to make the

reading more straightforward.

import pandas as pd

df = pd.read_json('data_503986.json')
df.sample(n=10)

Fla kA<
93913 Elon Mu

136659
17319

324598

386632 2139524304896

223030 f2328319504391 @els sk @Zack /Rig Would you support any of tho

311103 160 5048440832; e crime is happening and Tesla while you T

co/WNTIwOjdIU
gOftDtO0k

1589279742611771393

Check out $
gs for staking

1605368615435644928

Screenshot of a data sample — Image by author

As you can see, when collecting the data, I chose only to keep the text of the
tweet without any other information for anonymity reasons. This first

sample allows us to identify several important details.

» Many tweets contain mentions that start with the ‘@’ character
» Some tweets include emojis.

» Some tweets contain a link to the quoted tweet at the end of the text.

If you look in detail at the content of the tweets, we can already see that they

are very emotionally intense.

Let’s now proceed to the first cleaning step to visualize the most frequent

words in the corpus of tweets.

Most Frequent Words

Preprocessing

After dropping the id column, I identified some special characters and
unique features of our dataset. As a result, I defined the following pre-

processing function.

def pre_process(text):
Remove links

text = re.sub('http://\S+|https://\S+', '', text)
text = re.sub("http[s]?://\S+', "', text)
text = re.sub(r'"http\s+", "", text)

Convert HTML references

text = re.sub('&', 'and', text)
text = re.sub('<', '<', text)
text = re.sub('>', '>', text)
text = re.sub('\xae', ' ', text)

Remove new line characters
text = re.sub('[\r\n]+', ' ', text)

Remove mentions
text = re.sub(r'@\w+', '', text)

Remove hashtags
text = re.sub(r'#\w+', '', text)

Remove multiple space characters
text = re.sub('"\s+',' ', text)

Convert to lowercase
text = text.lower()
return text

We can apply it to all the rows of our dataset.

df['processed_text'] = df['text'].apply(pre_process)

text processed_text

since elon musk purchased twitter, about 90% of
my feed is conservative pundits offering mindless
conspiracies about elections, covid, ukraine,
democrats or jews.

Since Elon Musk purchased Twitter, about 90% of my feed
is conservative pundits offering mindless conspiracies
about elections, COVID, Ukraine, Democrats or Jews.

This is why your wife left you https://t.co/C63hnJeElG this is why your wife left you

@JHester1531 @C4Dbeginner @elonmusk That would be

. : that would be nice thing to do.
nice thing to do. SR ' g

@elonmusk That is all to frequently true that is all to frequently true

| can not believe this picture of elon musk at the world cup i can not believe this picture of elon musk at the
is real https://t.co/H1ZTY9XhNh world cup is real

Processed sample — Image by author

The data is already a little clearer. But we still have to deal with spam. Take a
look at the second tweet displayed. Am I the only one who thinks this looks
like spam? Let’s have a first look at the most used words to see if they are the

majority in our dataset.

N-Grams

For this, we will display the 20 most present bi-grams and tri-grams in our
dataset. We will remove the empty words to get the most accurate results
possible. We are going to use the Plotly library as well as some code snippets
from Susan Li that allowed me to make the following graphics dynamic and

more pleasing to see.

def get_top_n_bigram(corpus, n=None):
vec = CountVectorizer(ngram_range=(2, 2), stop_words='english').fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[@, idx]) for word, didx in vec.vocabulary_.ite
words_freq = sorted(words_freq, key = lambda x: x[1], reverse=True)
return words_freq[:n]

commen_words = get_top_n_bigram(df['processed_text'], 20)

dfl = pd.DataFrame(common_words, columns = ['TweetText' , 'count'])
dfl.groupby (' TweetText').sum()['count'].sort_values(ascending=False).iplot(
kind="bar',

yTitle='Count’,
linecolor="black',
title="Top 20 bigrams in Tweet before removing spams')

The 20 most frequent bi-grams in the dataset before removing spams

30k

T 20k
=
[}
(W}
10k
0
e T " T o B - T .. O - - A — B - T . S o> B, S - BT = S — O €
e % - £ & 2 8 ¢ £ 2 3288 2 2 ¢ 8 8 o
3 ® © @ & g2 = = L 3 = B o
a o Qo 3 3 v o o 3 o 3 B
A= s L1 4 =& ® = F — B = 5 | a =2 E
ggmmEmSm“’&mmo E & e 2 3
o L S (¥,)
2 825389 5°Es = g2 2508
=z 3 T
= o 4 § @& 3 W 3 2 g e =
- W = = 233
g K % ® T O
3 = 5 -
a E
o

EDIT CHART

Visualization of the most present bi-grams with spams— Graphic by author

As you can see on the graph above, from the second bi-gram onwards,
everything else is spam. I manually searched the dataset to confirm my
hypothesis and this is indeed the case. Many spammers use Elon Musk as a

hashtag or mention him to appear in front of more accounts.

Several solutions are available to us, we could remove duplicate lines in the
dataset, use a machine learning model to detect spam, or manually find the

tweets and remove it via a list of terms to ban.

I chose the third option because it was the easiest and fastest of the three to

implement.

to_drop = ["LP LOCKED",
"This guy accumulated over $160K",
"accumulated 1 ETH",
"help me sell a nickname",
"As A Big *x*x xx% To The SEC",
"Wanna be TOP G",
"#walv",
"#NFTProject",
"#1000xgem",
"SGALI",
"NFT",
"What the Soul of USA is",
"#BUSD",
"SEXMS"
"#fxms",
"#Floki",
"#FLOKIXMAS",
"#memecoin",
"#lowcapgem",
"#frogxmas",

"Xmas token",
"erypto space',
"Busd Rewards",
"TRUMPLON",

"NG PRESALE",
"H#MIKOTO",
"SHATI",
"SSKOLLY,
"#ebaydeals",
"CHRISTMAS RABBIT",
"@cz_binance",
"NFT Airdrop",
"HENFT"]

We drop the lines that contain any of the words in our list.

df = df[~df['text'].str.contains('|'.join(to_drop))]

We went from 503,986 lines to 487,047, so we eliminated 16,939 spams.

I also noticed that there were problems with the contractions of some words.

Don’t know became don know instead of do not know.

To fix this problem I decided to use the Python contractions library which

allows me to solve this problem.

def expand_contractions(text):
try:
return contractions.fix(text)
except:
return text

processed text expanded text

disagreed with fauci- the)
Fauci- they're what? Not 3 ientists" because they

257721 they thought differently?\nAre ci oW they t i y7\nAre YOU a
ow th nee. =3 3N i asic i 3)\ ience. pt when

biology. The 1 M jolo) e up what you 1, you can make up

" want." what you want."

4 people are allowed to link to
407108 O 4 d) | vill rt
products!

Processed and expanded sample — Image by author

We can now properly analyze our first graph.

Note: I removed the elon musk bi-gram because its presence has no real interest, we

already know that the tweets are about him.

The 20 most frequent bi-grams in the dataset after removing spams

Count

¢ 2 F§ 3 e &8 Z 3 R 8 3 833 B3y =8
B & F = 8 4 5% 2 5 £ 5§ £ I 5 m 5 & = n 2
w oo F P 5 = =" f = ¥ 5 3 3 uw g b 2 g o =
v o =S S e AT e

T = = 5 o g S = = = y l‘Cﬂ 3 = oy = o 2
% m = 0 3 = 5 = 2 = = %" D ® 2 o B 5 =
a o 2 8 w o9 o F 7 7 2 E 3 ©
- o - R £ £ 3

@ b=

(a]

=5

EDIT CHART

Visualization of the most present bi-grams without spams — Graphic by author

For those following what’s been happening on Twitter since the takeover,

you should find the various narrative arcs that have existed over the past few

months.

Now let’s see if the tri-grams return the same subjects. The code is more or

less similar. We only change one parameter in the CountVectorizer function.

def get_top_n_trigram(corpus, n=None):
vec = CountVectorizer(ngram_range=(3, 3), stop_words='english').fit(corpus)
bag_of_words = vec.transform(corpus)
sum_words = bag_of_words.sum(axis=0)
words_freq = [(word, sum_words[0, idx]) for word, idx in vec.vocabulary_.ite
words_freq = sorted(words_freq, key = lambda x: x[1], reverse=True)
return werds_freq[:n]

common_words = get_top_n_trigram(df['processed_text'], 20)

for word, freq in common_words:
print(word, freq)

dfé = pd.DataFrame(common_words, columns = ['TweetText' , 'count'])
df6.groupby (' TweetText').sum() ['count'].sort_wvalues(ascending=False).iplot(
kind='bar',
yTitle='Count’,
linecolor="black"',
title="'The 20 most frequent tri-grams in the dataset (without stopwords and

The 20 most frequent tri-grams in the dataset (without stopwords and spams)

1000

Count

500

0
© o = o 9w 0 g Z I g m =R -
5 o2 £ 5538338 7F=Z%325¢% 337 8
3 3 a2 & 5 3 § 2 =z zZ P 4 o5 = B I3 F & 3
= m o = = 3 = 2 v o = Q n R
53 4 & o 8 32 E o 3 @ @ 03‘=:3H'Om
E £ oo 35 £ 2 5 2 3 2 § 8% 53 x5 &£ 3 2 R
W = = w @ = O LD 5 4 o T 2 - =
e S T T S o S =i s B g 3 F ox= @ o
w o =2 = g g T & Bt Sl
s & 3 3 & @ 2 8 n 2 = 3 “ 3 @ 3z 20
5 % & g *~ a8 T 5 c =2 v 6 3 £ = E £ B s o
= £ =
T B 3 v ~ S 6 5 9 28 3 2 &
o o =2 = 3 5 a 3 a8
o §n =3 £¥. =
]) 3
* £ =]
w
EDIT CHART

Visualization of the most present tri-grams without spams — Graphic by author

Unlike the bi-grams, which had global themes, here you can find much more

precise themes. Namely :

¢ Hunter Biden’s laptop controversy.
¢ SpaceX, Elon Musk’s company.
¢ Real-time sharing of Elon Musk’s position by a journalist.
+ Elon Musk’s stated ambition to open up full freedom of expression.
» The accidental banishment of the singer Jimin from the group BTS.
We will analyze the feelings associated with these topics later in this article.

In the meantime, let’s move on to another type of visualization: the word

cloud.

WordClouds

With the word clouds, we can visualize two things. The so-called uni-grams
i.e. the single words but also the mentions. It can be interesting to see which
personalities are mentioned the most in the tweets about Elon Musk. Let’s

have a look at it together!

For uni-grams, we will follow almost the same steps as for N-Grams. The
difference is that this time we will lemmatize the words to reduce the similar

words that would have the same meaning.
For those not familiar with this concept :

e “I ate an apple” will be lemmatized into “I eat an apple”

e “running, ran, runs” will be lemmatized into “run, run, run”

This will allow similar words to be grouped together.

By reusing the get_top_n_words function used above, we have :

Needed -imports for WordCloud, Lemmatization, and Mask Image
from PIL +import Image

from nltk.stem import WordNetLemmatizer

from nltk.corpus import stopwords

from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator

Initialize Lemmatize
wordnet_lem = WordNetLemmatizer()

Lemmatize processed text and join everything in a list
df['text_lem'] = df['processed_text'].apply(wordnet_lem.lemmatize)
all_words_lem = ' ".join([word for word in df['text_string_lem']])

Now, all we have to do is generate a word cloud. To do this, I decided to use

the Twitter logo as a mask to present the results more attractively.

Indeed, I doubt that some people would have clicked on this article if T had
put the classic word cloud given by the library as a thumbnail & . Please tell
me in the comments if that’s the case for you. I am curious to know what

made you want to read this article!

Generate a word cloud image
mask = np.array(Image.open("twitter.jpg"))
stopwords = set(STOPWORDS)

wordcloud_twitter = WordCloud(height=2000,
width=2000,
background_color="white",
mode="RGBA",
stopwords=stopwords,
mask=mask) .generate(all_words_lem)

Create coloring from the -image

image_colors = ImageColorGenerator (mask)

plt.figure(figsize=[20,20])

plt.axis('off')

plt.tight_layout(pad=0)

plt.imshow(wordcloud_twitter.recolor (color_func=image_colors), interpolation="bi

Store visualization to file
plt.savefig("twitter_logo.png", format="png")

plt.show()
“ 3
exactly, fullow
done
1’unrr3.I ear

in Brmmmn e«arrfreedomsunport)fr“ﬂ
made matter
tesla god neuer lot

banne

Oqjlﬁ’.h democrat probaﬂt love word snclal me

t lmelma'.i!'llw ld 1dea
gUYﬁ}ngWOe'; ., pPe]aégn — -
try

lost

twitter |'11e

E e >, Wrong
! — oz actyally ';.L
(@] Ce an thin
- without , calle h O; 4.: fr;u-n-J Y E.
‘goodwork =gmuch 55 Y€back % said. gl\:e
25 o sound = o shit
We].]. }.ll;g P = £ m oint £ = happen
L E Dther's + AU = fuck
] indstep@ o =1 B =
change 5 E care E
JCI opinion zskgP?Y
s e em S pg e c h rcggll Lyta Ig h nk
jart
} ® hope greal ll.heral 11C help
gouernment E
election yet t tn‘ghe
another
g b g tell
tr nothlng Cdeay used
e]_ 0O nseem COfnPanY C‘“‘
america kee prnhlem
belleve agr hate got
amencan stupld yeah
o let ustalkmgunnerstand plea§e~
O }.Ong alway
famlly I}Etter coun‘try > fb1
g guessevenl }’f-'ﬂi
Way 5 ude NEWHking

E""“st 11 oo 8

Word cloud of unigrams — Image by author

Nothing surprising about this image, but it is a practical way to attract the

attention of your readers or audience when presenting your data. You can
use these types of visualizations to attract and then present other graphs that
are less attractive at first glance but give more information about the data.
Like I just did with you & .

For mentions, we will follow the same process, I will simply show you the

code to specifically extract mentions from tweets.

Retrieves all occurrences of @+text

df['mentions'] = df['text'].str.findall(r'@\w+"')

Removes the @ in front

df['mentions'] = [list(map(lambda x: x[1:], mentions)) for mentions in df['menti
Converts the list of words in each row to a string

EndwWokeness swmcost

ws
rel l’!OVlCh Splro Ghost eltonOfflClal Ozraelmm

WrBeast jhall r REH larklakano Ge
S t l l lg r a y Comlmlk}n}tcht Ht:.:lTHCI% EHusker She len er‘Support HD Cu

i C A8 iankar hergerid

MrAndyNgog.ceimlice ColllnRugg wholeMa rsﬁslrog 0::""

JeffBezas

- neiltyson-.ix T OMF 1 £ £ O ViTiAteredhosst, ciayrravis S5 ©
= Zaleskiluke JoeBiden o LegendaryEnergy 2 TwitterSafety m— 4~

ThlSISKYlER S RudyGiuliani E diehpperder Teslaconomics

RenbeSant §5FL unusual_whales e
h [o} d ge twin 5m dE y&%ﬁﬁf&ss;%n:%n eirliani ,Q.@, !:.‘J-kaefl S‘ S :

sfdbi Geogle mlcsglana Axralogan, DgyulclSar:ks h]ack

df['mentions_string'] = df['mentions'].apply(lambda x: ' '.join(x))
Concatenates all strings in one string
all_mentions = ' '.join([word for word in df['mentions_string']])
chb_doge
heydave?nealsaavedra
M T 10D Lepsesprensen.

Fal chevrolet KeithOlbermann seemenics
gﬂﬁq}ﬂ'ﬁfmk ,_.HfaFZYPEfI‘ng\[,W ‘garyblack00)
O RepMTG | Olnllet . akafacehn W”h andst?
S SpaceX a2 aglrwlﬁr t t YouTube

SawyerMerritt %gnytj_mes Wl e DrEliDavid

johnrighdeserroner: ﬂgkmﬁmnmIealDonald rump
_
a

.ill.l.li i |

artering

2 H FoxNew Ser\Daq:{nB?fnteE}gﬁn?r;rmx £e51a0WNersSV thefnestlypod 5
Meta ©
%;Sﬁ?::f,{dStatlonCDRKelly 5 51”959.%%*33

L— e

=#gi uaW™] pogdesta_lesley . larryelderg kapy%wggg

E ; 1

2c va ; o Theé‘aby:miee

C s R oy Nehl s]] ® GrahamhLLen_1

0 W2 2

g: I‘:.ju_ 1 " 1 R AC(Lj h alBenrgeknts 0 marti n.rar
SR8aSNoe ep am;'c dl MuskUniversity *
EvasTeslaSPlaid wpw av:r‘ A e ETTJ”;I’;ET';U

lexfridnan KimDotcom §lizable

NREpToﬂyGawales

skQulte

jade. .mge ncs Ra:n:nalwrwﬂ thevivafrel

JuddlLegum walﬂ ;trEEtSIlV POTUS TEEJI"J_CHG

rEEdJDnrocptrtweetlem J01 dan

Victorshi2020 y
Tes]_al Billymzk“““*’ wales
ahHeilper i

MattWallaceSSB

nichegamer

Word cloud of the most mentioned accounts — Image by author

Since a tweet needed to talk about Elon Musk to be part of the dataset, we
logically find Elon Musk in the middle of this visualization. It is quite

embarrassing because he is so present that it is difficult to realize the
importance of some other accounts. Let’s see what it looks like when we
remove it from the word cloud.

qhnrlch
lavern _spicer

he,fcla\.'e? =Lifvi

I(Q u 0 te “S,.,,e,cl,:nlt%am

Er1cRNexn5te1n

§ L sfdoi FOXN W T.eLsEiluaconngMr

¢ el;:gllrliun MuskUniversity
¢ oelizableu ThlSISK leR: 1]55 AFRICEdngn

= 0, MrAndyNgo ., EvasTeslaSPlawe tonofflc]_al

tim_cook Thmcast thevwafrﬂ

RepAdamSchiff S g
ERJ’CSOREN'-?EN neontaster
I ea lgooefgtaa]Ieslerulnp garyblack0o teslaownerssv larryelder y

o
™
y LIAW (=]
‘Utm Lyn. JennPrny tou) ""' “ l‘_\jc J:'.l.]l.r'lRuggS-ta't:'.(jr']CDRI(e]-].
xF cas ernuel 3 = Unfilteredboss lrassenstein fg;_?yness
n =
: é S O § ac TqJLEF;r'r Ri
- EE . : SJ ZU Ten Lwe arty, y g
Al EE : vy) : EndWokeness
= M ai D s = o & hDSou2a Real Jamesoods
s ey i avidSacks stasford ines
I—: v g GerberKawasaki: [. L v TW%EEQEtI\:“StUPPOI"t
5 t Wit s
| joeliien =
GOP E E £ STER o ice) g
a g iy ek -

Kelthulbel ann. ﬁWImwewﬂmn.MattWallaceBBB

annecoll chevrolet =_R
NI KimDotcom'
m H EE .E "l, "Tl '“POTUE HeBeast
g 3 RudyGiuliani
alx E;
W Ol QJMM RepMarkTakano

_.hodgetwinss

charliehirk)| Zaleckiluke Juddiegun
&%“J?é‘.ﬁ%’i‘jﬁ{“\rﬁallSt reetSilv

ba r lwe l S Sillms quir"darw
tedlieu"

Word cloud of the most mentioned accounts without Elon Musk— Image by author

And voila! The size of the accounts is now a bit more balanced. We have a

better idea of the most mentioned personalities in the tweets of our dataset.

Emojis
We will now look at the most used emojis in our dataset. Emojis are special

characters, and not all of them can be detected natively. So, to detect them
correctly, I used the emot library.

import emot

Define a function to extract emoticons
def extract_emoticons(text):

res = emot_obj.emoji(text)
return res['value']

This code snippet will simply return a list of emojis contained in the input

tweet. Let’s apply it to our text column and merge the results in a brand new

DataFrame.

We
one

Apply the function to each row of the 'text' column

df['emoticons'] = df['text'].apply(extract_emoticons)

Count the emojis in each list

df['emoticons'].apply(lambda x: collections.Counter(x))

Combine the counts

combined_counts = sum(df['emoticons'].apply(lambda x: collections.Counter(x)), c
Transform it into a dict

emoji_dict = dict(combined_counts)

Sort it in a descending order

sorted_emoji_dict = dict(sorted(emoji_dict.items(), key=lambda x: x[1], reverse=
Keep the top 20

d = {k: v for i, (k, v) in enumerate(sorted_emoji_dict.items()) if i < 20}

Convert the dict to a DataFrame for Plotly

df = pd.DataFrame(list(d.items()), columns=['Emojis', 'Count'])

now have a DataFrame with a column dedicated to emojis and another

containing the number of appearances of each of them in the whole

dataset. Let’s visualize it!

nt

df.groupby('Emojis').sum()['Count'].sort_values(ascending=False).iplot(
kind="'bar',
xTitle='Emojis',
yTitle='Count',
linecolor='black',
title='The 20 most used emojis after removing spams')

The 20 most used emojis after removing spams

14k
12k
10k

ol

Cou

6k

Ak

2k

3
@

& @ 6 &% Jeo ¥ e & s B S 8@ 2 ¢

Emojis

L
L

Visualization of the most used emojis in the dataset — Graphic by author

We find an overwhelming majority of laughing emojis. There is little to learn
from these results except for the clown emoji in 7th place which is not

generally associated with positive emotions but more with irony.

Unsupervised Sentiment Analysis

When we talk about unsupervised sentimental analysis there are two main

approaches.

We can either use a clustering algorithm such as KNN or DBSCAN which will
identify clusters without any particular indication. It will then be up to us to
identify the feelings contained in each cluster because the model is not

“aware” of this concept.

Another method, much easier to implement, is the lexical approach.
According to this method, in a sentence, each word carries an emotional
weight. Thus, the sentimental value of a sentence or a text is the

combination of the sentimental value of each word.

In this article, we will focus on the second method. If you are interested I

can explore the first approach in another article.

Two models or lexicons are very well known, they are Vader and TextBlob.

We will compare their predictions and visualize these results.

Vader

from nltk.sentiment.vader import SentimentIntensityAnalyzer

nltk.download('vader_lexicon')
sid = SentimentIntensityAnalyzer()

df['vader_polarity'] = df['processed_text'].map(
lambda text: sid.polarity_scores(text)['compound'])

As you can see, in just a few lines we can analyze the emotions of almost
500,000 tweets.

TextBlob

from textblob import TextBlob

df['blob_polarity'] = df['processed_text'].map(
lambda text: TextBlob(text).sentiment.polarity)

Comparison

Now that we have two new columns in our table, let’s see if the two libraries
more or less agree on the emotions in our dataset. To do this, we will

visualize the distribution of polarities depending on the library.

polarity_df = df[['vader_polarity', 'blob_polarity']]
polarity_df = polarity_df.rename(columns={'vader_polarity': 'Vader',
'blob_polarity': 'TextBlob'})

polarity_df.iplot(
kind="hist',
bins=40,
xTitle='Polarity',
linecolor="'black',
yTitle='Count',
title="Comparison of the distributions of sentimental polarities’,
colors = ['#1DA1F2', '#EBS8C17'],
barmode="group")

Sadly due to the limitations of the free version of Plotly, I'm unable to embed
it directly in this article. However, you can check the interactive version of

the graph on my website.

Comparison of the distributions of sentimental polarities

Methods
B vader
200k B TextBlob

150k
100k

50k

DTLLLL%hhﬂﬂoﬂﬂﬂhghLLLF

Polarity

Comparison of the distributions of sentimental polarities — Image by author

In any case, this graph allows us to see that although Vader and TextBlob use

a similar method, the results are not exactly the same.
TextBlob considers 217,000 tweets to be neutral, while Vader considers
142,000. If we deviate from the 0.0 polarity, we realize that Vader stretches

much more toward the extremes than TextBlob.

Despite the Bell Curve appearance, there is a slight shift on the positive side
of the polarity.

Let’s verify these visual intuitions by looking at the statistical data of the

polarities.

Vader TextBlob

count 48/047.000000 487047.000000

mean 0.040615 0.067221

std 0.456807 0.289077

min -0.999600 -1.000000

25% -0.296000 0.000000

50% 0.000000 0.000000

75% 0.401900 0.200000

max 0.998200 1.000000

Statistical description of the dataset — Image by author

Our visual observations are well confirmed by the statistics. The average

polarity is slightly positive.

Putting aside one’s personal opinion of Elon Musk, it’s interesting to see the
opinion is slightly positive about him. It’s a good way to remember that our
opinion, whether positive or negative, may not be shared by everyone and

that we must also be aware of our own biases.

Let’s now look at the sentimental polarities by topic.

Topic Analysis
Let’s look at the emotional tendency of the most found bi-grams in the
dataset. Before that, we remove stop words and punctuation to make it easier

to find topics in the string.

stop_words = nltk.corpus.stopwords.words('english')

def remove_stop_words(text):
text = text.translate(str.maketrans('', '', string.punctuation))
return ' '.join([word for word in text.split() if word.lower() not in stop_w

df['stop_text'] = df['processed_text'].apply(lambda x: remove_stop_words(x))

Now that our data is ready, let’s visualize the sentiments per topic!

We define a list of topics

topics = ['free speech',
"hunter biden’',
"twitter files',
'freedom speech’,
'right wing',
'donald trump']

vader_sentiments = df['vader_polarity'].tolist()
textblob_sentiments = df['blob_polarity'].tolist()
text = df['stop_text'].tolist()

We create a new column Topic
df['Topic'] = ""
for topic in topics:
df.loc[df['stop_text'].str.contains(topic), 'Topic'] = topic

We create a new DataFrame with columns topic / sentiment / source

data = []

for topic in topics:
topic_rows = df[df['Topic'] == topic]
Average sentiment per topic
vader_sentiments = topic_rows['vader_polarity'].sum() / topic_rows.shape[0]
textblob_sentiments = topic_rows['blob_polarity'].sum() / topic_rows.shape[0
Append data
data.append({'Topic': topic, 'Sentiment': vader_sentiments, 'Source': 'Vader
data.append({'Topic': topic, 'Sentiment': textblob_sentiments, 'Source': 'Te

df_new = pd.DataFrame(data)

Plot the sentiment for each topic
fig = px.bar(df_new,
x="'Topic!',
y='Sentiment’,
color="'Source',
barmode="'group',
color_discrete_sequence = ['#1DA1F2', '#EB8C17'],
title="Comparative sentimental analysis by topic',
template="plotly_white')

fig.update_traces(marker_Lline_width=1,
marker_line_color="black")

fig.show()

In order for the bar graphs to be roughly equivalent we will visualize the

average polarity per library on each of the subjects.

Comparative sentimental analysis by topic

Source
0.4 B Vader
[l TextBlob

0.3
|
% Q2
£ '
g
] 0.1

> - _I
-0.1
7 5 fy,, % % &,
e@a% mhwbv Mg . S0y, ‘ﬁ%aq sy ;
@f‘f; '{o'@ s "/@ %E’a » O@’ f":.r‘fbn

~Ch e
Topic EDIT CHART

Visualization of the sentimental polarities according to the subject and the source — Graphic by author

This graph allows us to see that some topics are unanimous while others are
more divided. We can also see that there is an important difference on some

subjects depending on the library.

Personalities

We can also look at the average emotional polarity of tweets that mentioned

particular accounts. I have selected some of the most mentioned accounts.

usernames = ['@Tesla',
'@TomFitton',
'@FoxNews',
'@realDonaldTrump’
'"@TwitterSupport',
'@nytimes']

3

The rest of the code is the same so let’s look at the results!

Comparative sentimental analysis by accounts

Source
> B vader
[TextBlob
S 005
'g J
=
L ot
1]
(73]
0
Ty Tomy, oy Ve Ty, P,
?(TQ " '99115. O d@ f:s\bp (T8
7R, Loy
Mo
Mention EDIT CHART

Visualization of the sentimental polarities according to the account and the source — Graphic by author

This is very interesting, the Tesla account seems to be mentioned on average

positively. Maybe customers wanting to show off their new purchase. While
other accounts like the New York Times account seems to have a rather

complex sentimental polarity as it differs between the two libraries.

You can also notice the difference between the sentimental averages in this
graph and the first one above. It seems that it is easier to get a sentimental
polarity further away from 0 when looking at a bi-gram rather than an

account mention.

Following this remark, let’s visualize our data one last time by analyzing tri-
grams.

Tri-grams

tri_grams = ['hunter biden laptop',
'elonmusk tesla spacex',
'real time location',
'free speech absolutist',
'free speech twitter']

Emotional analysis of the most present tri-grams

aurce

. Vader
0.4 B TextBlob

=

@ 0.2
E
—
! v
@
w

0

-0.2

EDIT CHART

Trigram

Visualization of the sentimental polarities according to the trigrams and the source — Graphic by author

As we explore and visualize our data set, we refine its characteristics and

find the right elements to visualize. This graph above is a great example. This

time, we find very strong sentimental polarities on certain subjects.

We can see that the controversy around Hunter Biden’s laptop has made a
big impact. Vader gives an average polarity of -0.25 for this topic. We also
notice that other subjects are unanimous like the tweets about Elon Musk and
Twitter as well as the tweets about freedom of speech. We reach a polarity peak
of 0.53 for Vader on the subject of freedom of expression on Twitter. We also
notice that on these subjects, the two libraries produce similar results.

Conclusion

In this article, we were able to explore an important part of Data Science.
From a manually collected dataset, we explored the corpus of tweets to get a
first idea of the topics present, the personalities mentioned as well as the
emojis. To do so, we used many text processing techniques used in natural

language processing.

This allowed us, during the unsupervised sentimental analysis, to know
what to visualize and why. As a result, we were able to present useful

comparisons of sentimental polarities in an attractive way.

Also, we could notice that the results were not always the same between the
two libraries. This gave us a glimpse of the limitations of these techniques.
Other techniques such as clustering or the use of a pre-trained model might

have given more accurate results.

In any case, with this article, I hope to have conveyed to you the interest that
these data can have. Business Intelligence services use similar tools to track

trends or get an idea of public opinion on a topic or a new product.

If you have a business or topic that interests you, go for it! Collect a lot of
data and offer your analysis. You might attract someone from that company

to offer you a job, who knows &2 .

Want to connect?

e || Follow me on Medium

« ® Subscribe to get an email whenever I publish
+ ® Fancy a coffee in Paris to discuss Al ?

o @ Connect with me on LinkedIn

P've also written:

Real-Time Sentiment Analysis with Docker, Kafka, and Spark
Streaming

A Step-By-Step Guide to Deploying a Pre-trained Model inan ETL
Process

pub.towardsai.net

Large-Scale Sentiment Analysis with PySpark

Comparative study of classification algorithms and feature =
extraction functions implemented in PySpark on 1,600,000... L I

pub.towardsai.net

Reducing Bias in LLMs: Fine-Tuning for Fairer Language Models

A Critical Examination of a Suggested Research Solution to Reduce
Bias in LLMs

generativeal.pub

References

¢ You will find the whole code and links to the visualizations in this Colab

notebook.

» This dataset has been acquired through an Elevated access to Twitter’s

API that allows Commercial Use. You can download it on Kaggle.

¢ Susan Li’s article on dynamic visualizations with Plotly that inspired
some of the code snippets.

Sentiment Analysis NLP Twitter Data Visualization Data Science

